Welcome, Guest. Please login or register.

December 08, 2019, 09:41:09 pm

### AuthorTopic: when something cuts the axis..  (Read 836 times) Tweet Share

0 Members and 1 Guest are viewing this topic.

#### droodles

• Guest
##### when something cuts the axis..
« on: November 15, 2007, 04:44:55 pm »
0
if a curve cuts the y-axis then x would equal to zero?

#### kingmar

• Victorian
• Forum Obsessive
• Posts: 351
• Non Sequitur
• Respect: +2
##### when something cuts the axis..
« Reply #1 on: November 15, 2007, 04:55:57 pm »
0
Yes.

y-intercept occurs at. x=0. Always.
ENTER: Incomprehensibly high

#### AppleXY

• Life cannot be Delta Hedged.
• Victorian
• ATAR Notes Superstar
• Posts: 2623
• Even when the bears bite, confidence never dies.
• Respect: +16
##### Re: when something cuts the axis..
« Reply #2 on: December 03, 2007, 11:03:34 am »
0
Yerp. When the function hits the y [f[X]] axis, then the X value will be 0
$\mathbb{A}\mathbb{P}\mathbb{P}\mathbb{L}\mathbb{E}\mathbb{X}\mathbb{Y}$ $\mathbf{A}\mathbf{K}\mathbf{A}$ $\mathbb{P}\mathbb{R}\mathbb{A}\mathbb{V}$

2009 - BBus (Econometrics/Economics&Fin) @ Monash

For Email: click here

Need a question answered? Merspi it!

[quote="Benjamin F

#### Collin Li

• VCE Tutor
• Victorian
• ATAR Notes Legend
• Posts: 4966
• Respect: +17
##### Re: when something cuts the axis..
« Reply #3 on: December 03, 2007, 04:02:35 pm »
0
Yerp. When the function hits the y [f[X]] axis, then the X value will be 0

Don't see why you dug up an old topic to answer an already answered question, haha.

I guess to add to the multiple answers of this:

The y-axis is pretty much a line defined by the rule: x = 0, that is why y-intercepts are the intersection between x = 0, and the function: y = f(x)

#### AppleXY

• Life cannot be Delta Hedged.
• Victorian
• ATAR Notes Superstar
• Posts: 2623
• Even when the bears bite, confidence never dies.
• Respect: +16
##### Re: when something cuts the axis..
« Reply #4 on: December 07, 2007, 09:08:25 pm »
0
yeah...the y-int... lol jks :p
$\mathbb{A}\mathbb{P}\mathbb{P}\mathbb{L}\mathbb{E}\mathbb{X}\mathbb{Y}$ $\mathbf{A}\mathbf{K}\mathbf{A}$ $\mathbb{P}\mathbb{R}\mathbb{A}\mathbb{V}$

2009 - BBus (Econometrics/Economics&Fin) @ Monash

For Email: click here

Need a question answered? Merspi it!

[quote="Benjamin F